中文 English  
       
 
  Home   About Us   News   Products   Certificates   Feedback   Contact Us  

此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Products
News-1
 

entfilter
entfilter@gmail.com

1. what is activated carbon?

Activated carbon, also called activated charcoal, activated coal, or carbo activatus, is a form of carbon processed to be riddled with small, low-volume pores that increase the surface area available for adsorption or chemical reactions.[1] Activated is sometimes substituted with active.

Due to its high degree of microporosity, just one gram of activated carbon has a surface area in excess of 500 m2, as determined by adsorption isotherms of carbon dioxide gas at room or 0.0 °C temperature. An activation level sufficient for useful application may be attained solely from high surface area; however, further chemical treatment often enhances adsorption properties.

Activated carbon is usually derived from charcoal.

(from Wikipedia)

2. What is Properties of activated carbon?

A gram of activated carbon can have a surface area in excess of 500 m2, with 1500 m2 being readily achievable. [4] Carbon aerogels, while more expensive, have even higher surface areas, and are used in special applications.


Activated carbon, as viewed by an electron microscopeUnder an electron microscope, the high surface-area structures of activated carbon are revealed. Individual particles are intensely convoluted and display various kinds of porosity; there may be many areas where flat surfaces of graphite-like material run parallel to each other, separated by only a few nanometers or so. These micropores provide superb conditions for adsorption to occur, since adsorbing material can interact with many surfaces simultaneously. Tests of adsorption behaviour are usually done with nitrogen gas at 77 K under high vacuum, but in everyday terms activated carbon is perfectly capable of producing the equivalent, by adsorption from its environment, liquid water from steam at 100 °C and a pressure of 1/10,000 of an atmosphere.

James Dewar, the scientist after whom the Dewar (vacuum flask) is named, spent much time studying activated carbon and published a paper regarding its absorption capacity with regard to gases.[5] In this paper, he discovered that cooling the carbon to liquid nitrogen temperatures allowed it to absorb significant quantities of numerous air gases, among others, that could then be recollected by simply allowing the carbon to warm again and that coconut based carbon was superior for the effect. He uses oxygen as an example, wherein the activated carbon would typically adsorb the atmospheric concentration (21%) under standard conditions, but release over 80% oxygen if the carbon was first cooled to low temperatures.

Physically, activated carbon binds materials by van der Waals force or London dispersion force.

Activated carbon does not bind well to certain chemicals, including alcohols, glycols, strong acids and bases, metals and most inorganics, such as lithium, sodium, iron, lead, arsenic, fluorine, and boric acid.

Activated carbon does adsorb iodine very well and in fact the iodine number, mg/g, (ASTM D28 Standard Method test) is used as an indication of total surface area.

Carbon monoxide is not well adsorbed by activated carbon. This should be of particular concern to those using the material in filters for respirators, fume hoods or other gas control systems as the gas is undetectable to the human senses, toxic to metabolism and neurotoxic.

Substantial lists of the common industrial and agricultural gases absorbed by activated carbon can be found online.[6]

Activated carbon can be used as a substrate for the application of various chemicals to improve the adsorptive capacity for some inorganic (and problematic organic) compounds such as hydrogen sulfide (H2S), ammonia (NH3), formaldehyde (HCOH), radioisotopes iodine-131(131I) and mercury (Hg). This property is known as chemisorption.

Iodine numberMany carbons preferentially absorb small molecules. Iodine number is the most fundamental parameter used to characterize activated carbon performance. It is a measure of activity level (higher number indicates higher degree of activation), often reported in mg/g (typical range 500–1200 mg/g). It is a measure of the micropore content of the activated carbon (0 to 20 Å, or up to 2 nm) by adsorption of iodine from solution. It is equivalent to surface area of carbon between 900 m²/g and 1100 m²/g. It is the standard measure for liquid phase applications.

Iodine number is defined as the milligrams of iodine adsorbed by one gram of carbon when the iodine concentration in the residual filtrate is 0.02 normal. Basically, iodine number is a measure of the iodine adsorbed in the pores and, as such, is an indication of the pore volume available in the activated carbon of interest. Typically, water treatment carbons have iodine numbers ranging from 600 to 1100. Frequently, this parameter is used to determine the degree of exhaustion of a carbon in use. However, this practice should be viewed with caution as chemical interactions with the adsorbate may affect the iodine uptake giving false results. Thus, the use of iodine number as a measure of the degree of exhaustion of a carbon bed can only be recommended if it has been shown to be free of chemical interactions with adsorbates and if an experimental correlation between iodine number and the degree of exhaustion has been determined for the particular application.

MolassesSome carbons are more adept at adsorbing large molecules. Molasses number or molasses efficiency is a measure of the mesopore content of the activated carbon (greater than 20 Å, or larger than 2 nm) by adsorption of molasses from solution. A high molasses number indicates a high adsorption of big molecules (range 95–600). Caramel dp (decolorizing performance) is similar to molasses number. Molasses efficiency is reported as a percentage (range 40%–185%) and parallels molasses number (600 = 185%, 425 = 85%). The European molasses number (range 525–110) is inversely related to the North American molasses number.

Molasses Number is a measure of the degree of decolorization of a standard molasses solution that has been diluted and standardized against standardized activated carbon. Due to the size of color bodies, the molasses number represents the potential pore volume available for larger adsorbing species. As all of the pore volume may not be available for adsorption in a particular waste water application, and as some of the adsorbate may enter smaller pores, it is not a good measure of the worth of a particular activated carbon for a specific application. Frequently, this parameter is useful in evaluating a series of active carbons for their rates of adsorption. Given two active carbons with similar pore volumes for adsorption, the one having the higher molasses number will usually have larger feeder pores resulting in more efficient transfer of adsorbate into the adsorption space.

TanninTannins are a mixture of large and medium size molecules. Carbons with a combination of macropores and mesopores adsorb tannins. The ability of a carbon to adsorb tannins is reported in parts per million concentration (range 200 ppm–362 ppm).

Methylene blueSome carbons have a mesopore (20 Å to 50 Å, or 2 to 5 nm) structure which adsorbs medium size molecules, such as the dye methylene blue. Methylene blue adsorption is reported in g/100g (range 11–28 g/100g).

DechlorinationSome carbons are evaluated based on the dechlorination half-life length, which measures the chlorine-removal efficiency of activated carbon. The dechlorination half-value length is the depth of carbon required to reduce the chlorine level of a flowing stream from 5 ppm to 3.5 ppm. A lower half-value length indicates superior performance.

Apparent densityThe solid or skeletal density of activated carbons will typically range between 2.0 and 2.1 g/cm3 (125–130 lbs./cubic foot). However, a large part of an activated carbon sample will consist of air space between particles, and the actual or apparent density will therefore be lower, typically 0.4 to 0.5 g/cm3 (25–31 lbs./cubic foot).[7]

Higher density provides greater volume activity and normally indicates better-quality activated carbon.

Hardness/abrasion numberIt is a measure of the activated carbon's resistance to attrition. It is an important indicator of activated carbon to maintain its physical integrity and withstand frictional forces imposed by backwashing, etc. There are large differences in the hardness of activated carbons, depending on the raw material and activity level.

Ash contentAsh reduces the overall activity of activated carbon and it reduces the efficiency of reactivation. The metal oxides (Fe2O3) can leach out of activated carbon resulting in discoloration. Acid/water soluble ash content is more significant than total ash content. Soluble ash content can be very important for aquarists, as ferric oxide can promote algal growths. A carbon with a low soluble ash content should be used for marine, freshwater fish and reef tanks to avoid heavy metal poisoning and excess plant/algal growth.

Carbon tetrachloride activityMeasurement of the porosity of an activated carbon by the adsorption of saturated carbon tetrachloride vapour.

Particle size distributionThe finer the particle size of an activated carbon, the better the access to the surface area and the faster the rate of adsorption kinetics. In vapour phase systems this needs to be considered against pressure drop, which will affect energy cost. Careful consideration of particle size distribution can provide significant operating benefits.

(from Wikipedia)


3.What is Ion-exchange resin

An ion-exchange resin or ion-exchange polymer[1] is an insoluble matrix (or support structure) normally in the form of small (1–2 mm diameter) beads, usually white or yellowish, fabricated from an organic polymer substrate. The material has a highly developed structure of pores on the surface of which are sites with easily trapped and released ions. The trapping of ions takes place only with simultaneous releasing of other ions; thus the process is called ion-exchange. There are multiple different types of ion-exchange resin which are fabricated to selectively prefer one or several different types of ions.


Ion exchange resin beadsIon-exchange resins are widely used in different separation, purification, and decontamination processes. The most common examples are water softening and water purification. In many cases ion-exchange resins were introduced in such processes as a more flexible alternative to the use of natural or artificial zeolites.

Most typical ion-exchange resins are based on crosslinked polystyrene. The required active groups can be introduced after polymerization, or substituted monomers can be used. For example, the crosslinking is often achieved by adding 0.5-25% of divinylbenzene to styrene at the polymerization process. Non-crosslinked polymers are used only rarely because they are less stable. Crosslinking decreases ion- exchange capacity of the resin and prolongs the time needed to accomplish the ion exchange processes. Particle size also influences the resin parameters; smaller particles have larger outer surface, but cause larger head loss in the column processes.

Besides being made as bead-shaped materials, ion exchange resins are produced as membranes. The membranes, which are made of highly cross-linked ion exchange resins that allow passage of ions, but not of water, are used for electrodialysis.

There are four main types differing in their functional groups:

strongly acidic (typically, sulfonic acid groups, e.g. sodium polystyrene sulfonate or polyAMPS)
strongly basic, (quaternary amino groups, for example, trimethylammonium groups, e.g. polyAPTAC)
weakly acidic (mostly, carboxylic acid groups)
weakly basic (primary, secondary, and/or ternary amino groups, e.g. polyethylene amine)
There are also specialised types:

chelating resins (iminodiacetic acid, thiourea, and many others)

(from Wikipedia)

 

4.What is good quality carbon blocks

 

What is good quality carbon blocks?    
 
5. Plastic Chemical Resistant

 

Plastic Chemical Resistant Data    
 
 
 

Address: Floor 11,Dong Tai Building, No.978 Pudong South Road, Shanghai,China,200120
Tel.: 0086-21-51099372 Fax:0086-21-51010572 E-mail: entfilter@gmail.com
All rights reserved©Shanghai E & T JAWA Import and Export Co.,Ltd